Conformance Checking Based on Multi-Perspective Declarative Process Models
نویسندگان
چکیده
Process mining is a family of techniques that aim at analyzing business process execution data recorded in event logs. Conformance checking is a branch of this discipline embracing approaches for verifying whether the behavior of a process, as recorded in a log, is in line with some expected behavior provided in the form of a process model. Recently, techniques for conformance checking based on declarative specifications have been developed. Such specifications are suitable to describe processes characterized by high variability. However, an open challenge in the context of conformance checking with declarative models is the capability of supporting multi-perspective specifications. This means that declarative models used for conformance checking should not only describe the process behavior from the control flow point of view, but also from other perspectives like data or time. In this paper, we close this gap by presenting an approach for conformance checking based on MP-Declare, a multi-perspective version of the declarative process modeling language Declare. The approach has been implemented in the process mining tool ProM and has been experimented using artificial and real-life event logs.
منابع مشابه
Aligning Event Logs and Declarative Process Models for Conformance Checking
Process mining can be seen as the “missing link” between data mining and business process management. Although nowadays, in the context of process mining, process discovery attracts the lion’s share of attention, conformance checking is at least as important. Conformance checking techniques verify whether the observed behavior recorded in an event log matches a modeled behavior. This type of an...
متن کاملObject-Centric Behavioral Constraints
Today’s process modeling languages often force the analyst or modeler to straightjacket real-life processes into simplistic or incomplete models that fail to capture the essential features of the domain under study. Conventional business process models only describe the lifecycles of individual instances (cases) in isolation. Although process models may include data elements (cf. BPMN), explici...
متن کاملAn alignment-based framework to check the conformance of declarative process models and to preprocess event-log data
Process mining can be seen as the “missing link” between data mining and business process management. The lion0s share of process mining research has been devoted to the discovery of procedural process models from event logs. However, often there are predefined constraints that (partially) describe the normative or expected process, e.g., “activity A should be followed by B” or “activities A an...
متن کاملInducing Declarative Logic-Based Models from Labeled Traces
In this work we propose an approach for the automatic discovery of logic-based models starting from a set of process execution traces. The approach is based on a modified Inductive Logic Programming algorithm, capable of learning a set of declarative rules. The advantage of using a declarative description is twofold. First, the process is represented in an intuitive and easily readable way; sec...
متن کاملAligning Event Logs and Process Models for Multi-perspective Conformance Checking: An Approach Based on Integer Linear Programming
Modern organizations have invested in collections of descriptive and/or normative process models, but these rarely describe the actual processes adequately. Therefore, a variety of techniques for conformance checking have been proposed to pinpoint discrepancies between modeled and observed behavior. However, these techniques typically focus on the control-flow and abstract from data, resources ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 65 شماره
صفحات -
تاریخ انتشار 2016